Công thức & cách tính diện tích hình nón

Bạn đang xem: Công thức & cách tính diện tích hình nón tại vietabinhdinh.edu.vn

Bạn đang tìm công thức tính diện tích hình nón để tính diện tích đáy, chu vi, diện tích toàn phần của hình nón. Vậy hãy tham khảo bài viết dưới đây để biết công thức & cách tính diện tích hình nón nhé.

Dưới đây Trung Tâm Đào Tạo Việt Á nhắc lại các kiến ​​thức về hình nón, công thức tính diện tích đáy hình nón, công thức tính diện tích xung quanh và diện tích toàn phần của hình nón, mời các bạn cùng theo dõi.

Hình nón là gì?

Khi quay tam giác vuông OAB quanh cạnh của góc vuông cố định OA ta được một hình nón. Vậy hình nón được tạo bởi:

  • Cạnh OB tạo nên đáy của hình nón là đường tròn tâm O.
  • Cạnh AB quét qua đường tròn ngoại tiếp hình nón, mỗi vị trí của nó gọi là một đường sinh.
  • A là đỉnh của hình nón và AO là đường cao của hình nón.

Giả sử bạn có một hình nón như thế này:

Ví dụ hình nón

Công thức diện tích hình nón

– Công thức tính diện tích xung quanh: \({S_{xq}} = \pi rl\)

– Công thức tính diện tích toàn phần: diện tích toàn phần của hình nón bằng diện tích xung quanh của hình nón cộng với diện tích đường tròn đáy của hình nón.

\({S_{tp}} = {S_{xq}} + {S_đ} = \pi rl + \pi {r^2}\)

Trong đó:

  • \({S_{xq}}\) là diện tích xung quanh của hình nón.
  • \({S_{tp}}\) là diện tích toàn phần của hình nón.
  • \({S_{đ}}\) là diện tích đáy của hình nón.
  • \(\pi \) là hằng số (= 3,14159265359).
  • r là bán kính đáy của hình nón.
  • l là độ dài đường sinh của hình nón.

Cách tính diện tích hình nón?

Để tính diện tích hình nón cần biết bán kính đường tròn đáy của hình nón r và độ dài đường sinh l. Nếu chưa biết r hoặc l cần làm theo yêu cầu của bài toán và tính bán kính r và độ dài đường sinh l.

Sau đó áp dụng các công thức tính diện tích hình nón thích hợp để tính diện tích hình nón.

Diện tích xung quanh hình nón: \({S_{xq}} = \pi rl\)

Diện tích đáy của hình nón: \({S_đ} = \pi{r^2}\)

Diện tích toàn phần của hình nón: \({S_{tp}} = {S_{xq}} + {S_đ} = \pi rl + \pi {r^2}\)

Ví dụ:

Cho hình nón có chiều cao là 8 cm và độ dài đường sinh là 10 cm, tính chu vi và diện tích toàn phần của hình nón.

Ví dụ về cách tính diện tích hình nón

Giả sử đỉnh của hình nón là O, tâm của mặt đáy là H và OA là một máy sinh của hình nón. Vậy ta có OH = 8cm; OA = 10 cm.

Trong tam giác vuông OHA ta có: \(H{A^2} = O{A^2} – O{H^2} \Rightarrow HA = \sqrt {O{A^2} – O{H^2} } \)

\(r = HA = \sqrt {O{A^2} – O{H^2}} = \sqrt {{{10}^2} – {8^2}} = 6\)

Đường sinh l = OA = 10

Diện tích xung quanh hình nón là: \({S_{xq}} = \pi rl = \pi .6.10 = 60\pi = 188c{m^2}\)

Diện tích của mặt đáy là: \({S_đ} = \pi{r^2} = \pi{.6^2} = 36\pi = 113c{m^2}\)

Diện tích toàn phần của hình nón là \({S_{tp}} = {S_{xq}} + {S_đ} = 60\pi + 36\pi = 96\pi 301c{m^2}\)

Như vậy trên đây Trung Tâm Đào Tạo Việt Á đã chia sẻ đến các bạn công thức và cách tính diện tích hình nón. Hi vọng qua bài viết này các bạn sẽ nhớ lại các công thức tính diện tích hình nón để áp dụng khi cần thiết.

Bạn thấy bài viết Công thức & cách tính diện tích hình nón có đáp ướng đươc vấn đề bạn tìm hiểu không?, nếu không hãy comment góp ý thêm về Công thức & cách tính diện tích hình nón bên dưới để vietabinhdinh.edu.vn có thể thay đổi & cải thiện nội dung tốt hơn cho các bạn nhé! Cám ơn bạn đã ghé thăm Website: vietabinhdinh.edu.vn

Nhớ để nguồn bài viết này: Công thức & cách tính diện tích hình nón của website vietabinhdinh.edu.vn

Chuyên mục: Kiến thức chung

Xem thêm chi tiết về Công thức & cách tính diện tích hình nón
Xem thêm bài viết hay:  Top 10 quán cafe học bài Quận 10 được bạn trẻ yêu thích

Viết một bình luận